
1. QG-Boussinesq divergent circulation

Consider an idealized atmosphere with  and , where  is a

constant thermal stratification. Suppose also that , where  is a constant shear. We

are interested in the effect of a 2D perturbation, , , etc., added to this envi-

ronment, as given by quasi-geostrophic theory.

a) Obtain the simplest form of the quasi-geostrophic forecast equations for the vorticity

and buoyancy,  and , in terms of the vertical velocity  and the constants,  and .

Take full advantage of the assumed symmetry of the perturbation, which gives not only

 for the perturbation, but also  (please tell why).

b) Use the 2 equations from part (a) together with thermal-wind balance to show that the

QG divergent circulation is determined diagnostically by

, (1)

whereL is anelliptic differentialoperator. Makeadiagramto show thesenseof thiscirculationin

a region of cyclonic relative vorticity, . Interpret the right-hand side of (1) (the “forcing”)

in terms of the advection of heat and vorticity contained in either the perturbation or basic flow.

c) Show that if the forcing in (1) is localized, then a “downgradient” heat flux,i.e.,

(2)

implies a thermally “direct” divergent circulation, whereas an upgradient flux is associated with

an indirect cell. (Recall that a direct circulation has

(3)

by definition.)
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2. Coupled Ekman layers

TheEkmanequationsfor theplanetaryboundarylayerareobtainedby writing thef-plane

momentum equation as

, (4)

with , and neglecting the left-hand side. Anindependent formula often used for

the stress at the ground is . Here  is a constant with dimensions of veloc-

ity.

a) Using the above model and assuming a geostrophic zonal wind, , in the free

atmosphere,find anexpressionfor thewind vectorat theground.Take and constant.Discuss

the limits  and . Be careful not to incorporate the traditional assumption that the

wind is zero at the ground!

b) Find the vertically integrated horizontal mass flux due to this boundary layer.

c) Whenthestresson theatmosphereis , thestresson theunderlyingoceanis obviously

. Determine the direction and strength of the surface current in terms of the surface wind, the

oceanic Ekman depth and the ratio , where  is the ocean water density. How does the

integrated boundary-layer mass flux in the ocean compare with that in the atmosphere?

3. Rossby adjustment problem for vortex strip

Considertheshallow-waterequationslinearizedaboutastateof restwith meandepth .

As aninitial condition,wehaveameridionalvelocity consistingof ashearflow thatis a linear

function of  alone, in three pieces:

(5)
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where  is the vorticity of the vortex strip between  and .  The initial condition on the

height is .

a) What is the equilibrium state of the flow for thenon-rotating case? What is the initial

and final kinetic and potential energy. Hint: This pr oblem is tricky but simple: show that this

initial condition is a valid solution of the equations of motion for all time, and, hence, at

equilibrium.  Remember that there is no  dependence.

b) What is the equilibrium state of the flow for therotating case, with a constant Coriolis

parameter ?  Should the solution be symmetric or antisymmetric about ? Use this fact to

simplify the problem.  Sketch the velocity and height at equilibrium.  Compare the energy in this

case to that of case a).

4. Edge waves on a circular vortex patch: Consider anaxisymmetric barotropic shear

flow specified in polar coordinates by

(6)

for constants  and .

(a) Assuming that the azimuthal velocity V matches at , find V as a function ofr.

(b) Perturbtheboundaryof thecircularregionof constantvorticity with asmall-amplitude

sinusoidal disturbance. Find the phase speed of this disturbance in terms of its azimuthal wave-

number. Show how this result reduces to the dispersion relation 6.50 of the class notes as either

thewavenumberor theradiusR increases.Hints: Review the notes,section6.9,beforeattempt-

ing this problem.  You will need to solve Laplace’s equation in polar coordinates.
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b) What is the equilibrium state of the flow for therotating case, with a constant Coriolis

parameter ?  Should the solution be symmetric or antisymmetric about ? Use this fact to

simplify the problem.  Sketch the velocity and height at equilibrium.  Compare the energy in this

case to that of case a).

4. Edge waves on a circular vortex patch: Consider anaxisymmetric barotropic shear

flow specified in polar coordinates by

(6)

for constants  and .

(a) Assuming that the azimuthal velocity V matches at , find V as a function ofr.

(b) Perturbtheboundaryof thecircularregionof constantvorticity with asmall-amplitude

sinusoidal disturbance. Find the phase speed of this disturbance in terms of its azimuthal wave-

number. Show how this result reduces to the dispersion relation 6.50 of the class notes as either

thewavenumberor theradiusR increases.Hints: Review the notes,section6.9,beforeattempt-

ing this problem.  You will need to solve Laplace’s equation in polar coordinates.
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1. QG-Boussinesq divergent circulation
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, (1)

whereL is anelliptic differentialoperator. Makeadiagramto show thesenseof thiscirculationin

a region of cyclonic relative vorticity, . Interpret the right-hand side of (1) (the “forcing”)
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(2)
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2. Coupled Ekman layers

TheEkmanequationsfor theplanetaryboundarylayerareobtainedby writing thef-plane

momentum equation as

, (4)

with , and neglecting the left-hand side. Anindependent formula often used for
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3. Rossby adjustment problem for vortex strip
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where  is the vorticity of the vortex strip between  and .  The initial condition on the

height is .

a) What is the equilibrium state of the flow for thenon-rotating case? What is the initial

and final kinetic and potential energy. Hint: This pr oblem is tricky but simple: show that this

initial condition is a valid solution of the equations of motion for all time, and, hence, at

equilibrium.  Remember that there is no  dependence.

b) What is the equilibrium state of the flow for therotating case, with a constant Coriolis

parameter ?  Should the solution be symmetric or antisymmetric about ? Use this fact to

simplify the problem.  Sketch the velocity and height at equilibrium.  Compare the energy in this

case to that of case a).

4. Edge waves on a circular vortex patch: Consider anaxisymmetric barotropic shear

flow specified in polar coordinates by

(6)

for constants  and .

(a) Assuming that the azimuthal velocity V matches at , find V as a function ofr.

(b) Perturbtheboundaryof thecircularregionof constantvorticity with asmall-amplitude

sinusoidal disturbance. Find the phase speed of this disturbance in terms of its azimuthal wave-

number. Show how this result reduces to the dispersion relation 6.50 of the class notes as either

thewavenumberor theradiusR increases.Hints: Review the notes,section6.9,beforeattempt-

ing this problem.  You will need to solve Laplace’s equation in polar coordinates.
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